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ABSTRACT 

The flow of a conducting fluid in a duct through a nonuniform 
magnetic field of the following type is considered: for x < 0, the field 
is uniform and parallel to the axis Ox of the duct; for x > 0, the field 
is nonuniform and the magnetic lines are slightly curved, so that it 
is possible to use a small-perturbation theory. Moreover, the magnetic 
Reynolds number R, and the Alfvkn number A are assumed small. 
One calculates the flow field, then the induced magnetic field. It is 
found that the disturbances which are propagated upstream decay 
exponentially for the flow and algebraically for the magnetic field. 

The object’ of this analysis is to determine the effect 
of the nonuniformity of a magnetic field on the flow of 
an eiectricaiiy conducting h i d  in a duct. 

Consider the 00w of a conducting 0uid through the 
magnetic field created by a solenoid of finite length. The 
fluid passes through a nozzle which is designed so that the 
shape of the inlet follows the magnetic lines. Beyond this 
nozzle, the cross section of the duct is constant (Fig. 1). 
Such a device has been conceived by Maxworthy 
(Refs. 1, 2) for the experimental study of flows with 
an aligned magnetic field. The object of such a pat- 
tern for the nozzle inlet is to avoid the introduction 
of current or vorticity and, therefore, to get a uniform 
00w with a uniform, aligned magnetic field in the test 
section ( T). However, the curvature of magnetic lines 
in the downstream region (D) creates disturbances 
which, in the sub-Alfvknic case, propagate upstream in 
the test section (Ref, 2).  

1. INTRODUCTION. PHYSICAL PROBLEM AND MATHEMATICAL MODEL 

velocity at infinity (Refs. 3, 4). The disturbances created 
by the obstacle in this latter flow can be compared with 
thnse created by the curvature of magnetic lines in the 
present case. However, one of the differences between 
these flows is the fact that here the wake, in which the 
disturbances are propagated, is channeled by the duct 
walls as soon as it begins to form; the effect of walls 
plays an important role in the manner of decay of dis- 
turbances. 

For the physical problem being considered, it is ad- 
visable to find a suitable mathematical model to represent 
the physical phenomena in the best fashion. 

Suppose that the axis of both two-dimensional solenoid 
and duct is the 0: axis; then the selected mathematical 
model is as follows: 

For > 0, the nonuniform magnetic field is the real 
one without flow. For T <  0, the magnetic field is uni- 
form and parallel to the axis. In other words, the 

Actually, this kind of flow is close to the flow past a 
body when the applied magnetic field is parallel to the 

1 
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P O L E N o i D  

( L 1  ( A )  

Fig. 1.  Real configuration 

magnetic lines which arrive at the point ?’ = 0 from 
x > 0 are continued by parallel straight lines in the nega- 
tive half-plane; namely, 

h) 

h) e -cy 

?> 0 Bappl (z 8 = [Fo + B: ( x ,  Y ) ] x - h r N r V  

+ EB%%Y) Y 

( 1 )  
- r V  

c N 

x < 0 &PPI 63 = Box 
N 

In these expressions, BO is a constant and E is a dimen- 
sionless parameter which characterizes the magnitude of 
the nonuniform field. 

However, from the mathematical point of view the 
region where the real magnetic field, without flow, is 
parallel to Oy actually reduces to a straight line ( L )  
orthogonal to the OFaxis (Fig. 1). Then, it will have 
two possibilities according as we choose for the Oraxis 
either this ( L )  line or the ( A )  line which separates the 
regions (T)  and (D) .  

1. If (L) is taken for the Oraxis (Fig. 2), the nonuni- 
form field for ?> 0 is theLe$ field, while the field 
for ;< 0 is uniform (E Bo x); we have 

& ( O J  = 0 ( 2 )  

2. If the region (T) is assumed to spread upstream to 
infinity, the line ( L )  is moved to infinity and the real 
magnetic configuration is as follows: From upstream 

infinity to line (A), which is at a finite distance- 
and which is selected for the Oraxis - the curvature 
of magnetic lines is infinitely small [region ( T ) ] ;  
this curvature is SO small in comparison with the 
curvature of magnetic lines in the downstream region 
(D) that disturbances which are created in ( T )  are 
negligible. Under these conditions, the mathematical 
model (Fig. 3) is constructed so that the nonuniform 
rV field for 7 > 0 is the real field in (D) while for 
x < 0 the field is uniform. Therefore 

N 

B,* (07 ;;> f 0 (3 )  

and N the magnetic lines show a discontinuity in slope 
at x = 0. 

2 



JPL TECHNICAL REPORT NO. 32-871 

+n 
- 4  

Fig. 3. Mathematical model: g; (0,;) # 0 

Now, in introducing the Heaviside function H ( x )  so 
that 

~ ( 3  = I  ifT>O 
H(?) = O  i f ? < O  

expressions (1) must be written: 
cv -- N - --- - " C Y  

B B P D l E ; ; )  = B o x + e H ( x )  [B:(xyY)x+B:(xYY)Y] 

( 4 )  

In other words, the applied magnetic field can be con- 
sidered as the superposition of a uniform field Box and 
a nonuniform field 

The following formal analysis is valid whatever the form 
of this N latter field which must satisfy the Maxwell equa- 
tion (B: and are conjugate harmonic functions); we 
shall need to specify the asymptotic behavior of 3 N 67) 
for infinite% and, in the case of a finite solenoid, B; is 
known to tend toward zero as r4. 

In this study, the parameter E will be assumed to be 
small; this hypothesis will permit the use of a small- 
perturbation theory. Moreover, the question of boundary 
conditions at walls for the magnetic field will lead us to 
assume a small magnetic Reynolds number, so that it 
will be possible to neglect the induced field (Section 11). 
The flow quantities will be calculated in Section 111; in 
this same section the higher approximation for the mag- 
netic field will be determined from the solution for the 
velocity. Finally, Section V will be devoted to a discus- 
sion of the solution. 

II.  EQUATIONS 

A. General Equations 
We consider the steady, two-dimensional flow, in a 

channel of infinite length and height 2h, of an incom- 
pressible, inviscid, nonthermally conducting fluid of elec- 
trical conductivity u and magnetic permeability p ;  this 
flow is subjected to the magnetic field defined by 
Eq. (4)-the electric field is assumed to be zero. - 

Let B be the magnetic induction, 7 the flow velocity, 
p the pressure, and F t h e  constant density. When E = 0, 
the applied magnetic field is uniform and pardlel to the 

Lu 

flow; therefore, itLeffect is zero and the uniform flow is 
characterized by V, = Vo x, p, ,  po(='. Let us introduce 
the following dimensionless quantities: 

--- N 

5 .. Y 

(5)  
B,,,, = x + E H ( ~ )  [ B :  x + B*"y] 

3 
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Under these conditions and with the usual hypothesis 
of magnetofluid dynamics, the equations are 

- N  B,(u B ,  - v B,) u - + v - t - =  (7) 
au au 
an: ay ax 

av ao ap 
ax aY aY 

U- + V -  + - == N B , ( u B ,  - v B,) (8) 

where 

aB, - - 5 = R ,  (u B, - v B,) 
ax ay 

(9) 

is the magnetic Reynolds number 
N 

u Bi h R, N = - - -  - 
A2 

Po To 
is the interaction parameter and 

B: 

is the square of the Alfvkn number. The boundary condi- 
tions will be discussed later. 

B. Lineurized Equations 

Now, e is assumed to be small; in other words, the 
curvature of magnetic lines in the region x>O is small 
and we are concerned with the perturbation fields in- 
duced by this curvature. For that, we assume that asymp- 
totic expansions of the following form exist: 

and 

y; € 9  R m ,  N )  = 1 + ~ H ( x )  B: (x, Y) 

+ &(e) bL1) (x, y; Em, N )  + * * * 

y; E, Ern, N )  = e H ( x )  B;  ( x ,  Y) 

+ &(e) b:)(~, 9; R,,,, N )  + ... 
(15) 

where the ai(€) are infinitely small with E and are deter- 
mined so that the equations have meaning; the quantities 
bp) and b:) are the components of the magnetic field in- 
duced by the perturbation flow. The study of the linear- 
ized equations obtained from expansions (14) and (15) 
shows that we must have 

S i ( € )  = E ( i  = 1, * . .  > 5 )  (16) 

Therefore, the linearized equations are: 

Now, introducing the only component of vorticity, ~ ( l ) ,  

Eqs. (17)-(21) give 

(24) 
1 

A' w(l) = __ j ( 1 )  

Moreover, W(l) and j ( l )  satisfy the same equation: 

The left-hand side of Eq. (25) is identical with the left- 
hand side of the equation studied by Lary (Ref. 3) in the 

4 
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case of flow past a thin airfoil with aligned uniform 
magnetic field. This equation allows us to forecast already 
the possibility of disturbances (created here by the curva- 
ture of magnetic lines) propagating upstream when the 
Alfvhn number is smaller than 1. 

Now, we must consider the boundary conditions : 

These boundary conditions are not sufficient; it is nec- 
essary to prescribe conditions on the magnetic field. The 
electrical conductivity of the wall is not infinite; there- 
fore, the magnetic field must be continuous through the 
wall and must be matched with the outer induced 
field, the two components of which are a pair of con- 
jugate harmonic functions. In the present case, because 
this problem leads to serious difficulties, we shall assume 
now that 

R,<< 1 (28) 

Under this hypothesis, the induced magnetic field can 
be neglected in a first approximation and the flow can 
be determined without boundary conditions for the field. 

Now, it is convenient to express the magnitude of the 
parameter R, in expansions (14) and (15): 

u(') (x, y; R,, N )  = u:) (x, y; N )  + R ,  u:~)  (x, y; N )  + * * .  

o ( ' )  (x, y; R,, N )  = u:) (x, y; N )  + R ,  0:') (x, y; N )  + ... 
p ! ! !  (x, y, E,, N )  = 7;') (x, 9; N )  -+ -9, p y  (r;  9; N )  + . . . 

(29) 

bp)(x, y; R,, N )  = R ,  bJ:) (x, y; N) + * * e  

The equations which must be satisfied by uc), u:), and p:) 
are 

With hypothesis (B), the interaction parameter N will 
not be infinitely small if 

A2 << 1 (34) 

This new condition means that the flow is very sub- 
Alfvhnic. Equations (31)-(33) give an equation for 1):) 
only: 

with the boundary conditions 

Note that (1) the component BY* (x, y) is the only one to 
play a role in the problem, and (2) the presence of the 
Heaviside function as well as its "derivative" indicates a 
sineularitv at x = 0. 

5 
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111. FLOW FIELD 

A. Calculation of t$’) 

The function BY* (x,y) in the right-hand side of Eq. 
(35) is odd with respect to y. The unknown 1):’) (x, y) is 
odd also and must be zero at y = AI. Therefore, it seems 
to be convenient to look for the solution in terms of 
Fourier sine series: 

m 

u:*) (x, y) = u, (x) sin nwy (38) 
n=i 

The function BY* (x, y) can also be expanded in a 
Fourier series: 

m 

B: (x, y) = Bn (x) sin *y (39) 
n=l 

Note that the Relation (39) gives BY* (x, t 1) = 0, 
while actually the value of BY* at y = & 1 is nonzero. 
Consequently, in order to have a good representation of 
the actual B; it is necessary to consider a large number 
of terms in the Fourier series. 

Now, un (x) must satisfy the following equation: 

with 

U, (x) + 0 when x + 00 (41) 

We can consider separately both equations, respec- 
tively, for x < 0 and x > 0 

x < O  u ~ + N u k - n ’ ~ ’ u  n = O  (42) 

x > 0 u: + Nu;- n ’ r ’ u  = N B:, (43) 

Then, the singularity appears in the boundary conditions 
at x = 0: (1) un ( r )  is continuous at x = 0, 

u t , ( +  0) - u n ( -  0) = 0 (44) 

(2) One condition on uk (x) at x = 0 is obtained by inte- 
grating Eq. (40) between - K  and K ,  and considering the 
limit when K tends toward zero: 

(45) (+  0) - U; (-0) = N B , , ( O )  

The importance of the value of B,* (x, y) at x = 0 ap- 
pears in this latter equation. If BY* (x, y) = 0, then 
B, (0) = 0 and ui  (x) is continuous at x = 0. On ‘the 
other hand, if B: (0, y) # 0, u’, (x) is discontinuous at 
x = 0. 

It is not difficult to solve Eqs. (42)-(43). The associated 
homogeneous equation has the following solutions 

(t) 
A n  e 

with 

Then, the general solutions of (42) and (43) are 

where K!,‘) and KILL) are integration constants, as yet un- 
determined; C:)  (x) and CF) (x) are functions of x which 
are determined in using the classical method of “variation 
of parameters.” We find 

6 
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The constants K F ) ,  K:),  KC)  ) and K F )  are determined by the boundary condi- 
tions. The conditions at infinity give 

The conditions at x = 0 give 

K F )  = B n  (0) 

Then, the solution of Eq. (42) is written as 

B. Calculation of uA1) and pi1) 

With the boundary conditions at infinity, Eq. (31) yields 

u:’) (x ,  Y) = - PA1) (x ,  Y) (56) 

and if we look again for the solution for us’) and pi1) in terms of Fourier series 

W 

uA1) ( x ,  y) = u, ( x )  cos nry 
n=o 

(57) 

we obtain from Eq. (33) 

uo (4 = P o  (x) = 0 

and, for n 3 1, 

Note that the first derivatives of un (x) and pn ( x )  are always continuous at x = 0 
for zero or nonzero values of €3; (0: y). 

7 
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C. Asymptotic Behavior 

tend toward zero as 
creasing function of n. 

For x+- a, expressions (55) and (59) show that O n  (x), u, (x), and p n  (x) 

, where A,!+), which is defined by Eq. (47), is an in- 

For x++ a, Un (x) tends toward zero as x - ~ ,  while u,, (x) and p ,  (x) behave 
as r4 (see Appendix A). 

In addition, it is possible to see that the Fourier series, the coefficients of which 
appear in (55) and (59), are absolutely and uniformly convergent for all x and 
all I y I < 1 (see Appendix B). Therefore, they determine continuous functions 
which tend toward zero when x++_ M . This being so, the asymptotic behavior 
of the solution given by Eqs. (55) and (59) for negative infinite x is obtained in 
considering only the first term of Fourier expansions, namely 

Thus, the propagation of disturbances upstream is made evident; moreover, 
the decay of these disturbances is exponential. 

Downstream, the perturbation flow quantities decrease algebraically; this 
behavior depends directly on the local applied magnetic field. 

These results, the validity of which will be discussed in Section V, lead to 
analogous conclusions for the corresponding vorticity. 

IV. MAGNETIC FIELD 

With the hypothesis that R,  << 1, the magnetic field has 
been neglected in the determination of flow field at the 
order of the approximation considered. But, knowing the 
solution uil), it is possible to calculate the higher approx- 
imation for the magnetic field, b::) and bh;) . These two 
quantities are solutions of 

At infinity b:;) and bi;) must tend toward zero, but the 
problem of boundary conditions at y = i-1 still remains. 

However, the knowledge of uil) in terms of a Fourier 
series permits one to obtain a particular solution of (62) 
or (63) in terms of an analogous series. Then, to this par- 
ticular solution we must add an harmonic function, which 
can be determined by considering the magnetic problem 
outside the duct. The two components of the outer mag- 
netic field are conjugate harmonic functions. We have to 
write the continuity of the two components of the field 
through the walls. 

Fundamentally, this problem is the same as that men- 
tioned in Section 11 for the full equations (17)-( 21), but 
now it is simplified by the fact that we have one equation 
for bi:) (or bi;)) only, this equation being of the Poisson 
type. 

8 
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Let the particular solutions be 
m 

( bk:))p = C bn( x )  cos nry 
n=o 

W 

( b L i ) ) p  = C P n ( x )  sin%y (65) 
n=l 

The method of solution is identical to the one which has been used for 1): ' ) .  We 
have for bn(x), for example, 

b: - n2& b, = -nr [ H ( x ) B n  -0.1 (66) 
with bn(x) + 0 when x + 2 co. At x = 0, bn(x) and its first derivative are con- 
tinuous. The calculation of bn(x) is straightforward; we find 

bo(x)  = 0 

(t)$ 

and for n 3 1 

bn(x) = H (  - r )  [DF) ex, 1 + DF) enaz 

4- H (  x )  \enTx [la e-@ Bn( t )  & 

where 

9 
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Equation (20) gives 

Therefore, it is possible to calculate Pn ( x )  from (67). As 
for uhl) ( x ,  y) and 01') (x, y) it is possible to demonstrate 
the absoIute and uniform convergence of Fourier series 
for (b;;)) ,  and (bh:)),. 

Now, consider the following three regions of the x .  q 
plane: 

Inner region - 1 < y < 1  - w < x < + m  

region y > l  - m < x < + m  

region y < - 1  - m < x < + w  

Outer positive 

Outer negative 

Let b$;) and b( ' )  be the solutions of (62) and (63) in the 
inner region, ;:e., the sum of the particular solutions 
(64) - (65) and harmonic functions. In the same manner 
bin+), b:+), and b i n - ) ,  b:-) are the components of the 
outer field. 

We can write 
m 

b$;) (x, I/) = b,, (x) cos nry 
n.1 

+ l i c o s h  ay) [A, (a)cos a x  + B, (a) sin ax] da 

m 
bit) ( x ,  y) = C pn ( x )  sin nry 

n.1 

For bi('-) and b:-) which correspond to the region 
y < - 1, it is sufficient, taking account of the symmetry, 
to replace e+u by ea' in bl(l+) and e-@' by - eau in b$O+). 
Moreover, because of this symmetry, it is necessary to 
specify the continuity of the magnetic field only at 
y = + 1. That will determine the four functions A, (a),  

Bo (a) and A, (a), B, (a) which are not yet known. There- 
fore 

2 ( -  1)" bn ( x )  + lm (cosh a ) [A, (a) COS ax 
n=l  

+ B, (a) sin ax] da 

= im e-@ [A,, ( a )  COS ax + Bo (a) sin ax] da (72) 

lm(sinh a) [B, (a) cos ax - A, (a) sin ax] da 

= - Lme-.  [Bo (a) cos ax - A, (a) sin ax] da (73) 

Now, let 
m 

F ( x )  = (- 1)" b, (x) = H ( -x )  F ( - )  (x) 
n=1 

+ H (x) F ( + )  (x) (74) 

where 

and the expressions b: (x) are given by Eq. (67). 

Each of the series (75) is absolutely and uniformly 
convergent for all x. Then the function F") ( x )  are 
continuous and bounded; therefore F (x) verifies the 
Dirichlet conditions. Moreover, it is easy to see that 
F-1 (x) decreases as eA(;' 'for large negative x and 
F ( + )  ( x )  decreases as x-' for large positive x. This being 
so, in the Fourier integral 

F (x) = :s_" F ([)lm cos a ([ - X) da d( (76) 

We can invert the two integrations and, substituting 
Eq. (76) in Eq. (72), we see that the conditions (72) - (73) 
will be satisfied if 

sinha Bo (a) = - la F ( t )  cos a t  clt 

e-a m 

B, (a) = - 71m F (4) sin a t  dt  

(77) 

1 0  
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Thus, the expressions (70) give the solution in the region - 1 < y < 1: 
bi;) (x, y) = 

m 
bn (x)  cos nmy - L/I F ( t ) lwe-ocoshay  cosa (,$ - x )  dad6 

n=1 H 

W 

bg)(x,y)  = C p n ( x ) s i n t h r y + -  1 : F  ( t ) lm  e-" sinh ay sin a (6 - x) da 4 
n=i  

In integrating with respect to a, it is found that 

These expressions represent the solution for b;;) (x, y) and b;:) (x, y). When x is 
large (positive or negative), we have for the two integrals in (81) and (82) (see 
Appendix C):  

For large negative x the Fourier series in the solutions (81)-(82) decreases 
exponentially; therefore, it is concluded that the disturbances of the magnetic 
field are propagated upstream with an algebraical decay: x-' for b;:) (x, y) and 
x-3 for b;;) (x, y). Far downstream, the induced field presents the same asymp- 
totic behavior. The validity of these conclusions is subject to the restrictions 
discussed in the following section. Note that the power of x characterizing the 
decay does not depend on the applied magnetic field. 

Now, if we consider the current j i l J  which is exactly given by the eqiiatioii 

it is seen that, for negative x, the current decays in exactly the same manner 
as vA1), namely the exponentially (in the calculation of the current the harmonic 
part of magnetic field gives no contribution). 

V. VALIDITY OF THE SOLUTION 

In the course of the analysis, we have introduced asymptotic expansions depend- 
ing on the two small parameters E and R,. For the magnetic field 

11 
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and for the transverse velocity, for example, 

u = E [ u ~ )  + R,o:') + R2i)(')  m z  + - - . I  + E*[u;*) + R,U;*) + R'u(') m z  + -1 t 

and we have then calculated us'), then bi;) and b:;) . 
The following difficulties need some explanation: 

1. First of all, the terms in E~ have been neglected. It is relatively easy to see, 
from the corresponding equations, that the terms in E* present no singularity and 
can be neglected in comparison with those in E for any value of x. 

2. In order to determine us' ) ,  we have neglected ER,bi;) with respect to 
1 + eH(x)B: and ER,bL;) with respect to E H ( X ) B ;  . At x = 0, the solutions for 
b:;) and bi;) have no singularity, but bb;) is different from zero, while B: can be 
zero. That means that, for a given R,, there exists a neighborhood of x = 0- 
depending on the value of R ,  -within which R,b;;) is equal to and even greater 
than B:. However, one can see that such terms as i);'), ai):') /ax,  ap,/ay, . . . , 
which are nonzero at x = 0, remain in the equation. Consequently, although the 
term R,bi:) becomes of the same order as B:, it can be neglected with respect 
to the other terms of the equation. 

3. In the analysis, only the component (B,,,,), = EH(x)B: played a role; how- 
ever, it is convenient to consider the behavior of the component (Ba,lp,)z = 
1 + € H ( x ) B T .  

If the total applied magnetic field (sum of the uniform part and the nonuniform 
part) is created by a finite solenoid, the two components must tend toward zero 
at infinity, particularly 

1 + EBT + 0 whenx+ + 00 

Consequently, the nonuniform part, which has been assumed small with respect 
to the uniform part, becomes of the same order of magnitude, although within 
the channel the slope of the tangent to magnetic lines tends toward zero. There- 
fore, under these conditions, the solution is not valid at positive infinity. 

However, as has been pointed out, the applied magnetic field can be con- 
sidered as the superposition of a uniform field (1, 0) and a nonuniform field 
( E H ( x ) B : ,  cH(x)B ,* )  which can also have the following character: As x tends 
toward infinity, B: and BS tend toward zero and the component 1 + EB: tends to- 
ward 1. The corresponding magnetic configuration is shown in Fig. 4 for the case 

_ _ _ _ - _ _ _  - - -  - -  - - -  vx 
Fig. 4. Magnetic field configuration for the case when B: (0,y) = 0 
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where B: (0, y) = 0. At a finite distance along axis Ox, the magnetic lines are 
identical to those of Fig. 2; but, for infinite x, they become asymptotes of the 
extensions of the parallel magnetic lines of region x < 0. With that behavior for 
the applied magnetic field, the difficulty previously mentioned is not present. 

4. The quantity R,b;:) has been neglected with respect to eH(x)Bf in order to 
calculate u:') . That is justified at a finite distance; but when x + + 00, 

then bi;) - x3, while B: - r4 in the case of a finite solenoid. Therefore, at a 
certain distance, of the order of R;, the term R,bL;) becomes of the same order 
of magnitude as BY* . Therefore, the solution is not valid for x + + co with any 
given fixed R,. However, the formal solution will be valid in a neighborhood of 
any point xo if R ,  is chosen so that 

5. Finally, one must study the validity of the formal solution obtained for the 
velocity (or the pressure). The higher approximation for the transverse velocity, 
say u y ) ,  must satisfy the equation 

which is identical to the equation satisfied by u j l )  except that bi:) replaces 
H(x)B,*.  Therefore, because b$) behaves like x - ~  at positive and negative infinity, 
we can deduce - it is even possible to calculate ul1) exactly - that for x+ - co , 
u;*J- x - ~ ,  while 2):)- ex!+Jz and that for x+ + co, 1):') - x - ~ ,  while 21:') -r5. 
There again the neglected term u; l )  becomes of the same order of magnitude as 
i):') and the solution is not uniformly valid. However, this formal solution will be 
valid in a neighborhood of any point x, if R,, which must already verify the con- 
dition (86)) is chosen so that 

(88) 

VI. CONCLUSION 

With the hypothesis that R, u 1, A2 6: 1, and taking account of the discussions 
of the previous section, it has been found that the nonuniformity of the applied 
magnetic field in the half-plane x 3 0 creates disturbances in the flow as well as 
in the magnetic field. These disturbances are propagated upstream; they decay 
exponentially for the flow quantities, and algebraically for the magnetic field. 
We must emphasize that, with the hypothesis R ,  E( 1, the order of the magnetic 
field perturbation is higher than that of the flow perturbation. However, we note 
that both vorticity and current, although of different orders of magnitude, decay 
in identical manner. 

1 3  
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APPENDIX A 

Asymptotic Behavior of Integrals for large Positive x 

Let the integral For large x, B,(x) can be replaced by its asymptotic be- 
havior, for a finite solenoid S, r4, where S, is a constant 
which depends on n.Then the integral in (A-1) is calculated 
by integrating by parts, and one finds 

Z,(X) = e A t ) Z l f f i  e-")# B,(() d( ( ~ - 1 )  

Following an analogous method, we find 

APPENDIX B 

Convergence of Fourier Series 

It is sufficient to show only the convergence of the 
series giving u!) ( x ,  y): 

2 o,,(x) sin nry (B-1) 
n=1 

The demonstration for other Fourier series occurring in 
the analysis will be the same. 

Let us consider the series 

For negative x, the general term of this latter series is 

(B-3) 

The B ,  are the Fourier coefficients of the function 
B;(x,y)whichis boundedin theregion - m<x< w,ly[<l; 

hence, there exists a positive, bounded function G(x) such 
that 

(B-4) 

where M is an upper bound of G(x). Now, we can find a 
constant K and a rank m for which 

The series of the general term enn2/n2 is absolutely and 
uniformly convergent for all x < 0. This result leads to an 
analogous conclusion for Series (B-2), and we can con- 
clude that the series (B-1) is absolutely and uniformly 
convergent for every x < 0 and every I y 1 < 1. 

For positive x, the expression for the general term of 
(B-1) is slightly more complicated, but it is possible to 
obtain the same conclusion of convergence. 

1 4  
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APPENDIX C 

Asymptotic Behavior of Integrals (83) and (84) for large x 

For integral (82) we can write the following identity: 

where 

a =  l + - y  

and we want to show that the second integral (C-1) is 
finite for infinite x. 

From Eq. (73) we have 

Now, it is sufficient to show only that the second integral 
on the right-hand side of (C-3), for example, is finite. An 
analogous argument will be valid for the first integral. 

When x+ A 00 ,  F ( + )  (6) g ( &  x) tends uniformly toward 
2 6 F ( + )  (t)  for any finite 6. For large 6, we know that 
F ( + )  ( E )  - 6-4. Therefore, there exists a to such that 

where P is a suitable constant. Now, the limit for x+& 00 

of the first integral in the right-hand side of (C-4) is the 
integral of the limit, and we can show the uniform con- 
vergence of the second integral for any x which leads to 
the conclusion expressed in Eq. (83). 

An analogous argument permits us to find the asymp- 
totic behavior of integral (84). 

1 5  
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A 

b n  

b27 b, 

N 

B" 

N 

P 

R, 

( T )  

NOMENCLATURE 

AlfvBn number V, (p  p,)"/B, 

Fourier coefficient of ( b::))p 

Components of induced magnetic in- 
duction 

Particular solutions of Eqs. (62) and 

Fourier coefficient of B ;  

Components of magnetic induction B 

Components of nonuniform applied 
magnetic induction 

Intensity of uniform applied magnetic 
induction 

Magnetic induction 

Applied magnetic induction 

Downstream region 

Value of (bL:))p at y = 1 

Defined from F by Eq. (75) 

Half-height of duct 

Heaviside function 

Current density 

Midline of solenoid 

Subscript in (u,, z),, p,, b,, P,) refers 
to Fourier coefficient in general term 
of Fourier series 

Interaction parameter R,,,/A2 

Pressure 

Magnetic Reynolds number poV,h 

Test section 

(63) 

N 

u 

t, 

V Flow velocity 

x 

x 

y 

y 

Component of V in x direction 

Component of V in y direction 

Coordinate along axis of duct 

Unit vector of Ox axis 

Coordinate normal to axis of duct 

Unit vector of Oy axis 

pn Fourier coefficient of (b;:)),,  

E Dimensionless parameter character- 
istic of magnitude of nonuniform ap- 
plied field 

Roots of characteristic equation of A:*) 

Eq. (40) 

(A) Line separating regions (T) and (D) 

p Magnetic permeability of fluid 

p Density 

u Electrical conductivity of fluid 

Vorticity 

Subscript in (Vo, po ,  po) refers to uni- 
form unperturbed flow 

Superscript in (u(l), z ) ( l ) ,  p ( l ) ,  bp)  
b;)) refers to perturbation quantities 

Subscripts combined with superscript 
(1) refer to quantities of zero and first 
order in R, 

Superscript refers to dimensional quan- 
tities; corresponding symbol without - refers to dimensionless quantities 

- z -  
0 

(1) 

0 and 1 

- 
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